Energy Management Power Analyzer Type WM14 DIN "Advanced version"

- Protection degree (front): IP40
- · 2 digital outputs
- 16 freely configurable alarms with OR/AND logic linkable with up to 2 digital outputs
- RS422/485 serial output (MODBUS-RTU), iFIX SCADA compatibility

- Class 1 (kWh), Class 2 (kvarh)
- Accuracy ±0.5 F.S. (current/voltage)
- Power Analyzer
- Instantaneous variables read-out: 3 DGT
- Energies readout: 8+1 DGT
- System variables: V_{LL}, V_{LN}, An, A_{dmd max}, VA, VA_{dmd}, VA_{dmd max}, W, W_{dmd}, W_{dmd max}, var, PF, Hz, ASY
- Single phase variables: V_{LL}, V_{LN}, V_{LN min}, V_{LN max}, A, A_{min}, A_{max}, A_{dmd}, VA, W, W_{dmd}, W_{max}, var, PF, PF_{min}
- Harmonic analysis (FFT) up to the 15th harmonic (current and voltage)
- Four quadrant power measurement
- Energy measurements: total and partial kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Universal power supply: 90 to 260 VAC/DC, 18 to 60 VAC/DC
- Front dimensions: 107,8x90mm (6 DIN modules)
- Voltage asymmetry, phase sequence, phase loss control

Product Description

3-phase advanced power analyzer with integrated programming key-pad. Particularly recommended for the measurement of the main electrical variables.

Housing for DIN-RAIL mounting, with RS485 communication port or pulse and/or alarm outputs.

How to order WM14-DIN AV5 3 H R2 S1 AX

Model — Range code — System —	_
Power supply —	
Output 1	
Output 2	
Ontion	

Type Selection

Range codes	System	Output 1	Output 2
AV5: 380/660V _{L-L} /1/5(6)AAC V _{L-N} : 185 V to 460 V V _{L-L} : 320 V to 800 V AV6: 120/208V _{L-L} /1/5(6)AAC V _{L-N} : 45 V to 145 V	3: 1, 2 or 3 phase, balanced/unbalanced load, with or without neutral	R2: 2-relay outputs O2: 2-open collector outputs	XX: None S1: RS485/RS422 port
V _{L-L} : 78 V to 250 V Phase current: 0.03A to 6A	Power supply		Options
Neutral current: 0.09A to 6A	L: 18 to 60 VAC/VDC H: 90 to 260 VAC/VDC	•	AX: advanced functions

Input specifications

Rated inputs Current Voltage	System type: 3 - phase 3 (by Shunts) 4	Phase-neutral voltage Active and Apparent power,	±(0.5% FS + 1 DGT) 0.25 to 6A: ±(1% FS +1DGT); 0.03A to 0.25A: ±(1% FS		
Accuracy (display, RS485) (@25°C ±5°C, R.H. ≤60%)	with CT=1 and VT=1 AV5: 1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL	Reactive power	+5DGT) 0.25 to 6A: ±(2% FS +1DGT); 0.03A to 0.25A: ±(2% FS +5DGT)		
Current	0.25 to 6A: ±(0.5% FS +1DGT) 0.03Ato 0.25A: ±(0.5% FS +7DGT)	7 touvo or longy	Class 1 (start up current: 30mA) Class 2 (start up current: 30mA)		
Neutral current	0.25 to 6A: ±(1.5% FS +1DGT) 0.09Ato 0.25A: ±(1.5% FS +7DGT)	Frequency	±0.1Hz (48 to 62Hz) ±3% F.S. (up to 15 th harmonic)		
Phase-phase voltage	±(1.5% FS +1 DGT)		(F.S.: 100%)		

Input specifications (cont.)

Additional errors Humidity	≤0.3% FS, 60% to 90% RH	Measurements
Temperature drift	≤200ppm/°C	Туре
Sampling rate	1600 samples/s @ 50Hz 1900 samples/s @ 60Hz	Coupling type Crest factor
Display refresh time	200ms (FFT off) 500ms (FFT on)	Input impedance 380/660V _{L-L} (AV5)
Display		120/208V _{L-L} (AV6)
Type	LED, 9mm	Current
Read-out for instant. var.	3x3 DGT	Frequency
Read-out for energies	3+3+3 DGT (Max indication: 999 999 99.9)	Overload protection Continuous: voltage/cui
Read-out for hour counter	1+3+3 DGT (Max. indication: 9 999 9.99)	For 500ms: voltage/cur

Measurements	Current, voltage, power, power factor, frequency	
Туре	TRMS measurement of distorted waves.	
Coupling type	Direct	
Crest factor	< 3, max 10A peak	
Input impedance		
380/660V _{L-L} (AV5)	1.6 MΩ ±5%	
120/208V _{L-L} (AV6)	1.6 MΩ ±5%	
Current	≤ 0.02Ω	
Frequency	48 to 62 Hz	
Overload protection Continuous: voltage/current For 500ms: voltage/current	(max values) AV5: 460V _{LN} , 800V _{LL} /6A AV6: 145V _{LN} , 250V _{LL} /6A AV5: 800V _{LN} , 1380V _{LL} /36A	
Ğ	AV6: 240V _{LN} , 416V _{LL} /36A	

Output Specifications

Digital outputs Pulse type Number of outputs Type	Up to 2 Programmable from 0.01 to 500	Insulation	By means of optocuplers, 4000 V_{RMS} output to measuring inputs, 4000 V_{RMS} output to power
	pulses per kWh/kvarh		supply input.
Alarm type	Pulse duration ≥ 100ms < 120msec (ON), ≥ 100ms (OFF) according to EN62053-31	Relay outputs Purpose Type	For alarm outputs or for pulse outputs Relay, SPST type
Number of outputs Alarm modes	Up to 2, independent Up alarm, down alarm, in window alarm, out window alarm. Start-up deactivation	Machanical life	AC 1-5A @ 250VAC DC 12-5A @ 24VDC AC 15-1.5A @ 250VAC DC 13-1.5A @ 24VDC
	function available for all kinds of alarm. All of them connectable on all variables	Mechanical life: Electrical life: Insulation	≥ 30 x 10 ⁶ operations ≥ 10 ⁵ operations (@ 5A, 250 V, PF 1) 4000 V _{RMS} output to
Set-point adjustment	(see the table "List of the variables that can be connected to") From 0 to 100% of the		measuring input, 4000 V _{RMS} output to supply input.
cot point adjacament	display scale	RS422/RS485	(on request)
Hysteresis	From 0 to full scale		Multidrop bidirectional (static and
On-time delay	0 to 255s		dynamic variables)
Output status	Selectable; normally de-energized and normally energized	Connections	2 or 4 wires, max. distance 1000m, termination directly on the instrument
Min. response time	≤400ms, filters excluded, With FFT off; ≤1s, with FFT on. (with set-point on-time delay: "0 s")	Addresses Protocol	From 1 to 255, selectable MODBUS/JBUS (RTU)
Remote control	The digital ouputs status can be managed by means of serial communication RS485,	Data (bidirectional) Dynamic (reading only)	System and phase variables: see table "List of variables"
Note	if programmed as "rEM". The 2 digital outputs	Static (reading and writing) Data format	All the configuration parameters. 1 start bit, 8 data bit, no parity, 1 stop bit
	can also work as pulse output and alarm output.	Baud-rate Insulation	4800, 9600,19200, 38400bits/s By means of optocouplers,
Static outputs			2.5 K V _{RMS} output to measuring input
Purpose	For pulse outputs or for		2.5 K V _{RMS} output to
Signal	alarm outputs V_{ON} 1.2 VDC/ max. 100 mA V_{OFF} 30 VDC max.		supply input

Software functions

Password 1st level 2nd level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 999, all data are protected	Alarms Working mode	"OR" or "AND" or "OR+AND" functions (see "Alarm parameter and logic" page). Freely programmable on up to 16 total alarms	
System selection System 3, unbalanced System 3, balanced	3-phase (3-wire, 4-wire) 3-phase ARON 2-phase (3-wire) 3-phase (3-wire, 4-wire)		(out1+out2). The alarms can be connected to any variables available in the table "List of the variables that can be connected to"	
-,	3-phase (4-wire) "1CT+1VT" 3-phase (3-wire) "1CT+2VT" 1-phase (2-wire)	Reset	By means of keypad: The following kinds of reset are available:	
Transformer ratio CT VT/PT 1.0 to 6000.0	1 to 60000		 - all values stored as "dmd max": Admd max, Wdmd max, VAdmd max - all values stored as 	
Filter Operating range Filtering coefficient Filter action Displaying	erating range of to 100% of the input display scale ering coefficient er action fraction of to 100% of the input display scale 1 to 32 Measurements, alarms, serial output (fundamental variables: V, A, W and their derived ones). Ilaying Up to 3 variables per page		"max": A ₁ , A ₂ , A ₃ , WL ₁ , WL ₂ , WL ₃ , VL ₁ , VL ₂ , VL ₃ , and as "Min": PF ₁ , PF ₂ , PF ₃ , A ₁ , A ₂ , A ₃ , VL ₁ , VL ₂ , VL ₃ . Only the kWh and kvarh partial counters - Both the kWh and kvarh	
. , 3	See table "Display pages"		total and partial counters - the hour counter.	

Power Supply Specifications

AC/DC voltage 90 to 260VAC/DC **Power consumption** 16 to 60VAC/DC

AC: 6 VA DC: 3.5 W

General Specifications

Operating	0 to +50°C (32 to 122°F)
temperature	(RH < 90% non condensing)
Storage	-30 to +60°C (-22 to 140°F)
temperature	(RH < 90% non condensing)
Overvoltage category	Cat. III (IEC 60664, EN60664)
Insulation (for 1 minute)	4kVAC _{RMS} between measuring inputs and power supply. 4kVAC/DC @ I ≤3mA between measuring inputs and RS485. 4kVAC _{RMS} between power supply and RS485.
Dielectric strength	4kVAC _{RMS} (for 1 min)
EMC	
Emissions	EN61000-6-3 residential environment, commerce and light industry

Immunity	EN61000-6-2 industrial environment.
Pulse voltage (1.2/50µs)	EN61000-4-5
Safety standards	IEC60664, IEC61010-1 EN60664, EN61010-1
Approvals	CE, cULus
Connections 5(6) A Max cable cross sect. area	Screw-type 2.5 mm ²
Housing	
Dimensions (WxHxD) Material	107.80x90x64,5 mm ABS self-extinguishing: UL 94 V-0
Mounting	DIN-RAIL
Protection degree	Front: IP40 (standard) Connections: IP20
Weight	Approx. 400 g (pack. incl.)

Insulation between inputs and outputs

	Measuring Inputs V	Measuring Inputs A	Relay outputs	Open collector outputs	Communication Port	Power Supply 90-260VAC/DC	Power Supply 18-60VAC/DC
Measuring Inputs V	-	-	4kV	4kV	2.5kV	4kV	4kV
Measuring Inputs A	-	-	4kV	4kV	2.5kV	4kV	4kV
Relay outputs	4kV	4kV	-	-	4kV	4kV	4kV
Open col. out- puts	4kV	4kV	-	-	2.5kV	4kV	4kV
Communication Port	2.5kV	2.5kV	-	-	-	4kV	4kV
90-260VAC/DC	4kV	4kV	4kV	4kV	4kV	-	-
18-60VAC/DC	4kV	4kV	4kV	4kV	4kV	-	-

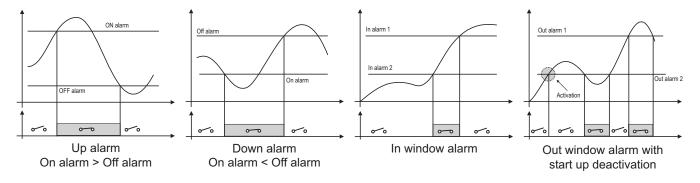
NOTE: In case of fault of first insulation the current from the measuring inputs to the ground is lower than 2 mA.

List of the variables that can be connected to:

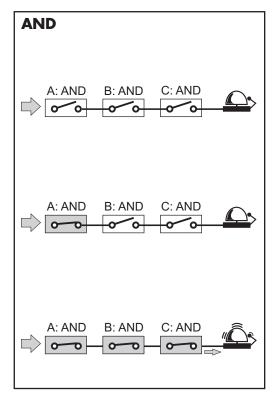
- RS485/RS422 communication port
- · Alarm outputs ("max / min" variable, "energies" and "hour counter" excluded)
- Pulse outputs (only "energies")

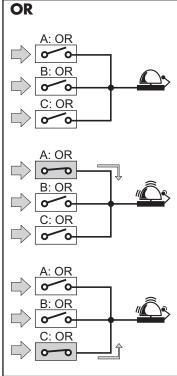
No	Variable	1-phase system	2-phase system	3-ph. 4-wire balanced sys.	3-ph. 4-wire unbal. sys.	3 ph. 3-wire bal. sys.	3 ph. 3-wire unbal. sys.	Notes
1	V L1	Х	Х	Х	Х	0	0	# A
2	V L2	0	Х	Х	Х	0	0	# A
3	V L3	0	0	Х	Х	0	0	# A
4	V L-N sys	0	Х	Х	Х	0	0	Sys = system
5	V L1-2	0	Х	Х	Х	Х	Х	
6	V L2-3	0	Х	Х	Х	X	Х	
7	V L3-1	0	0	Х	Х	X	Х	
8	V L-L sys	0	Х	х	Х	X	х	Sys = system
9	A L1	Х	Х	х	Х	X	х	# A
10	A L2	0	Х	Х	Х	X	Х	# \Delta
11	A L3	0	0	Х	Х	X	Х	# \Delta
12	An	0	Х	х	Х	X	х	
13	W L1	Х	Х	х	Х	0	0	•
14	W L2	0	Х	Х	Х	0	0	•
16	W L3	0	0	Х	Х	0	0	•
17	W sys	0	Х	х	Х	X	х	Sys = system
18	var L1	Х	Х	х	Х	0	0	
19	var L2	0	Х	Х	Х	0	0	
20	var L3	0	0	Х	Х	0	0	
21	var sys	0	Х	Х	Х	Х	Х	Sys = system
22	VA L1	Х	Х	Х	Х	0	0	
23	VA L2	0	Х	х	Х	0	О	
24	VA L3	0	0	х	Х	0	О	
25	VA sys	0	Х	х	Х	X	х	Sys = system
26	PF L1	Х	Х	Х	Х	0	0	P
27	PF L2	0	Х	Х	Х	0	0	P
28	PF L3	0	0	Х	Х	0	0	P
29	PF sys	0	Х	х	Х	X	х	Sys = system
30	Hz	Х	Х	х	Х	X	х	
31	Phase seq.	0	0	Х	Х	Х	Х	
32	ASY L-N	0	Х	Х	Х	X	Х	
33	ASY L-L	0	Х	х	Х	X	х	
34	Phase loss	0	Х	Х	Х	X	х	
35	VA sys dmd	Х	Х	Х	Х	Х	Х	Sys=system ◆ ○
36	W sys dmd	Х	Х	Х	Х	X	Х	Sys=system ◆ ○
37	A L1 dmd	Х	Х	Х	Х	X	Х	
38	A L2 dmd	0	Х	х	Х	X	х	
39	A L3 dmd	0	0	Х	Х	X	Х	
40	A L dmd	Х	Х	Х	Х	X	Х	
41	A L1 THD	х	Х	х	Х	Х	х	
42	A L2 THD	0	Х	Х	Х	Х	Х	
43	A L3 THD	0	0	Х	Х	Х	Х	
44	V L1 THD	Х	Х	Х	Х	Х	Х	
45	V L2 THD	0	Х	Х	Х	Х	х	
46	V L3 THD	0	0	Х	Х	Х	Х	
47	kWh	Х	Х	Х	Х	Х	Х	Total and partial
48	kvarh	Х	Х	Х	Х	Х	Х	Total and partial
49	hours	Х	Х	Х	Х	Х	Х	

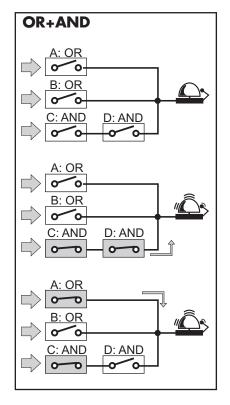
- (x) = available
- (o) = not available
- (♦) These variables are available also as MAX detection and data storage (on EEPROM at power down).
- (P) These variables are available also as MIN detection and data storage (on EEPROM at power down).
- (□) Highest value among the 3-phase.
- (O) Alarm available only on the consumed power (+).
- (#) These variables are available also for the MAX values, which have not been stored in the EEPROM at power down.
- (Δ) These variables are available also for the MIN values, which have not been stored in the EEPROM at power down.


Alarm parameters and logic

- Block enable.
- Controlled variable (VLN, ...).
- Alarm type (up, down, in window, out window).
- Activation function.


- ON set-point.
- OFF set-point.
- ON delay.
- Logical function (AND, OR).
- Digital output (1, 2).


A, B, C... up to 16 parameter control blocks.



Note: any alarm working mode can be linked to the "Start-up deactivation" function which disables only the first alarm after power on of the instrument.

AND/OR logical alarm examples:

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	1st variable	2 nd variable	3 rd variable	Note
1	%	"ASY"	"L N"	Phase to neutral asymmetry
2	V L1	V L2	V L3	
3	V LN sys		PF sys	Sys = system
4	V LL sys		PF sys	Decimal point blinking on the right of the display
5	V L1 2	V L2 3	V L3 1	Decimal point blinking on the right of the display
6	%	"ASY"	"L L"	Phase to phase asymmetry
7	"PH"	"SEq"	123/132	Phase sequence
8	A L1	A L2	A L3	
9	A dmd L1	A dmd L2	A dmd L3	dmd = demand (integration time selectable from 1 to 30 minutes)
10	An	"n"	Hz	An= neutral current
11	W L1	W L2	W L3	
12	W dmd L1	W dmd L2	W dmd L3	dmd = demand (integration time selectable from 1 to 30 minutes)
13	PF L1	PF L2	PF L3	
14	var L1	var L2	var L3	
15	VA L1	VA L2	VA L3	
16	VA sys	W sys	var sys	
17	VA dmd sys	W dmd sys	Hz	dmd = demand (integration time selectable from 1 to 30 minutes)
18	V max L1	V max L2	V max L3	Max value of phase to neutral voltage
19	V min L1	V min L2	V min L3	Min value of phase to neutral voltage
20	A max L1	A max L2	A max L3	Max value of current
21	A min L1	A min L2	A min L3	Min value of current
22	W max L1	W max L2	W max L3	Max value of W
23	PF min L1	PF min L2	PF min L3	Min value of PF
24	VA dmd sys max	W dmd sys max	"H"	Max system dmd
25	A dmd max		"H"	Highest value among the 3-phase
26	V L1 THD	V L2 THD	V L3 THD	
27	A L1 THD	A L2 THD	A L3 THD	
28	h (MSD)	h	h (LSD)	Hour counter
29	kvarh (MSD)	kvarh	kvarh (LSD)	Partial counter
30	kWh (MSD)	kWh	kWh (LSD)	Partial counter
31	kvarh (MSD)	kvarh	kvarh (LSD)	Total counter
32	kWh (MSD)	kWh	kWh (LSD)	Total counter

MSD: most significant digit LSD: least significant digit

1) Example of kWh visualization:

This example is showing 15 933 453.7 kWh

2) Example of kvarh visualization:

This example is showing 3 553 944.9 kvarh

7

CARLO GAVAZZI

Waveform of the signals that can be measured

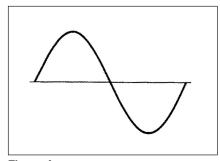


Figure A Sine wave, undistorted Fundamental content

Harmonic content $A_{rms} =$

0% 1.1107 | A |

100%

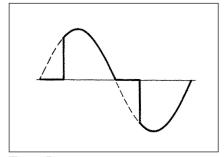
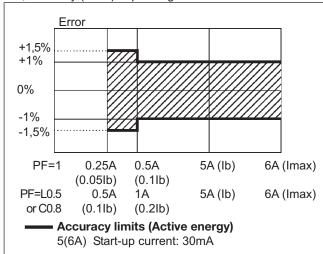


Figure B Sine wave, indented

Fundamental content Harmonic content

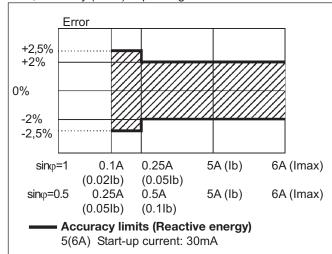
0...90% Frequency spectrum: 3rd to 16th harmonic Additional error: <1% FS

Figure C


Sine wave, distorted

Fundamental content 70...90% Harmonic content 10...30% Frequency spectrum: 3rd to 16th harmonic

Additional error: <0.5% FS


Accuracy

Wh, accuracy (RDG) depending on the current

varh, accuracy (RDG) depending on the current

10...100%

Used calculation formulas

Phase variables

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{i}^{n} (V_{1N})_{i}^{2}}$$
Instantaneous active power

$$W_1 = \frac{1}{n} \cdot \sum_{i=1}^{n} (V_{1N})_i \cdot (A_1)_i$$

Instantaneous power factor

$$cos\phi_1 = \frac{W_1}{VA_1}$$

 $cos\phi_1 = \frac{W_1}{VA_1}$ Instantaneous effective current

$$A_1 = \sqrt{\frac{1}{D} \cdot \sum_{i=1}^{D} (A_1)_i^2}$$

 $A_1 = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_i)_i^2}$ Instantaneous apparent power

$$VA_1 = V_{1N} \cdot A_1$$

Instantaneous reactive power

$$VAr_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

System variables

Equivalent three-phase voltage

$$V_{\Sigma} = \frac{V_{12} + V_{23} + V_{31}}{3}$$

Three-phase reactive power

$$VAr_{\Sigma} = (VAr_1 + VAr_2 + VAr_3)$$

Neutral current

$$An = \overline{A_{L1} + A_{L2} + A_{L3}}$$

Three-phase active power

$$W_{\Sigma} = W_1 + W_2 + W_3$$

Three-phase apparent power

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + VAr_{\Sigma}^2}$$

Three-phase power factor

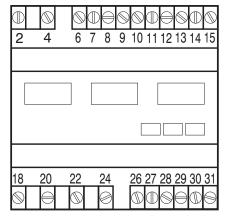
$$\cos \varphi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$$

Energy metering

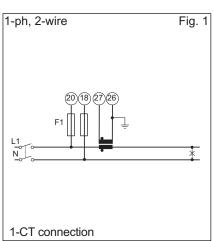
$$kWh_i = \int_{t_2}^{t_2} P_i(t) dt \cong \Delta t \sum_{n=1}^{n} P_{n,i}$$

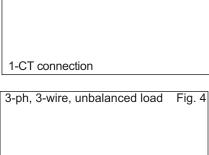
$$k Varh_i = \int_{t_1}^{t_2} Q_i(t) dt \cong \Delta t \sum_{n=1}^{n_2} Q_{n,i}$$

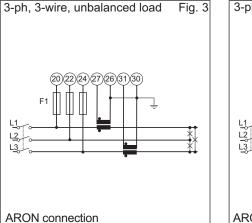
i= considered phase (L1, L2 or L3) P= active power; Q= reactive power; $\mathbf{t_1}$, $\mathbf{t_2}$ =starting and ending time points of consumption recording; \mathbf{n} = time unit;∆t= time interval between two successive power consumptions; n_1 , n_2 = starting and ending discrete time points of consumption recording

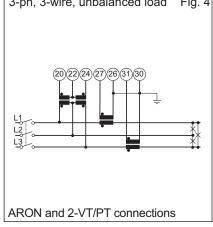


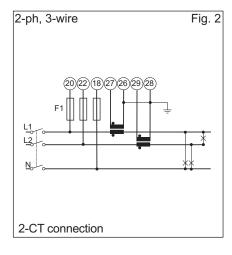
Harmonic Analysis

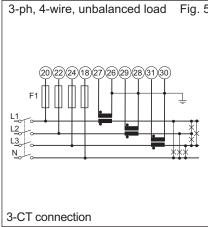

Analysis principle	FFT	Display of harmonic values	THD %
Harmonic measurement Current Voltage	Up to 15th harmonic Up to 15th harmonic	Others	The harmonic distortion can be measured in both 3-wire or 4-wire systems.
Type of harmonics	THD (VL1) THD (VL2) THD (VL3) THD (AL1) THD (AL2) THD (AL3)		

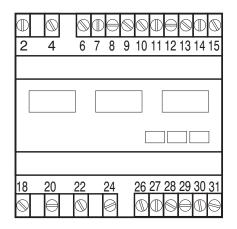

Wiring diagrams

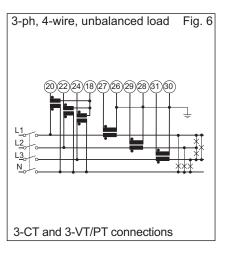

When the CT is connected to earth, a leakage current from 0 to 1.8mA max is generated, whose value depends on the input impedance values of the instrument, on the type of connection and on the line voltage measured by the instrument.

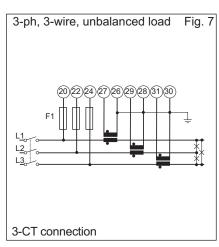


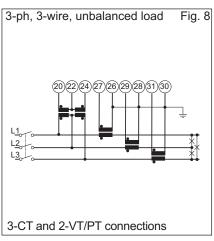

F1= 315mA

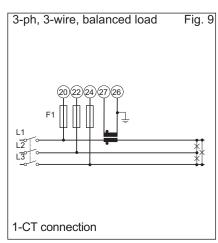


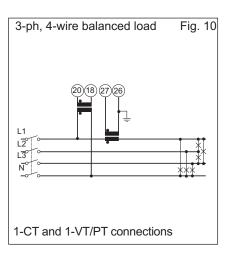


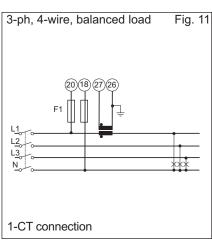

NOTE: the current inputs can be connected to the mains ONLY by means of current transformers. The direct connection is not allowed.

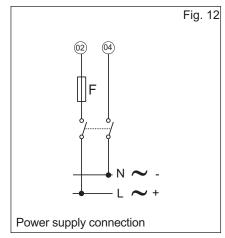


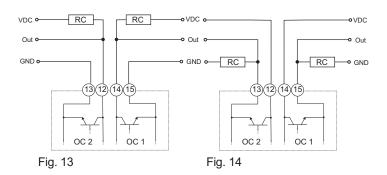

Wiring diagrams

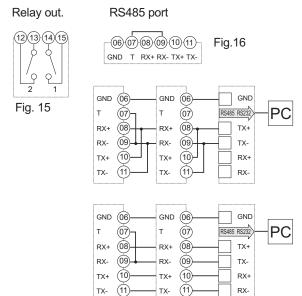

When the CT is connected to earth, a leakage current from 0 to 1.8mA max is generated, whose value depends on the input impedance values of the instrument, on the type of connection and on the line voltage measured by the instrument.

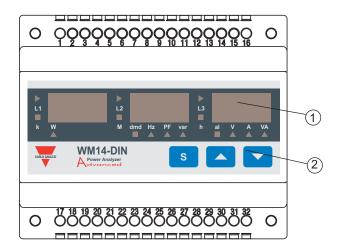









NOTE: the current inputs can be connected to the mains ONLY by means of current transformers. The direct connection is not allowed.


Output connections

Open collector outputs: The load resistance (Rc) must be designed so that the closed contact current is lower than 100mA; the VDC voltage must be lower than or equal to 30V. VDC: external power supply voltage. Out: positive output contact (open collector transistor). GND: ground output contact (open collector transistor).

Front Panel Description

1. Display

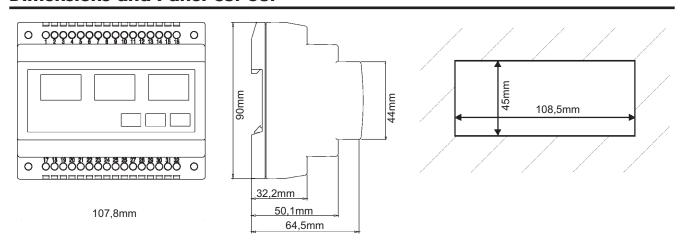
LED-type with alphanumeric indications to:

Fig. 17

- display configuration parameters;
- display all the measured variables.

2. Key-pad

To program the configuration parameters and the display of the variables.


Key to enter programming and confirm selections;

Keys to:

- programme values;
- select functions;
- display measuring pages.

Dimensions and Panel Cut-out

